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ABSTRACT 

Necessary and sufficient conditions are given for the convergence 

of mixed methods for the solution of elliptic differential equations. 

Error bounds are given in the norm which show that full accuracy 

can be obtained when all variables are approximated by piecewise poly- 

nomial functions of the same degree. 
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1. I n t r o d u c t i o n  

It is  easy t o  show t h a t  the f u n c t i o n a l  

(1) J(u,O) &(O,U)  + (TU-O,G) - ( f , u )  

assumes a s t a t i o n a r y  v a l u e  whenever (u,O) s a t i s f i e s  t h e  equa t ions  

T u = a  i n  R , bu = 0 on as2 

T*G = f 

where T is  a l i n e a r  map from the H i l b e r t  space H1 t o  t h e  H i l b e r t  space 

H2 , T* i s  i t s  formal a d j o i n t ,  and b is  a boundary o p e r a t o r .  Mixed 

methods r e s u l t  from t h e  app l i ca t ion  of Galerkin techniques t o  t h e  s o l u t i o n  

of (2),  o r  e q u i v a l e n t l y  t o  t h e  f i r s t  v a r i a t i o n  of (1) .  The purpose of t h i s  

n o t e  is  t o  g ive  necessa ry  and s u f f i c i e n t  c o n d i t i o n s  f o r  t h e  convergence 

of mixed methods f o r  t h e  s o l u t i o n  of e l l i p t i c  equat ions.  These r e s u l t s  

extend and sharpen ear l ie r  r e s u l t s  [ 71 ,  [81, [91. With mixed methods 

s e v e r a l  dependent v a r i a b l e s  are  approximated s imultaneously.  W e  a l s o  g ive  

e r r o r  bounds which show t h a t  f u l l  accuracy can be obtained f o r  a l l  v a r i a b l e s  

being approximated. 

t h e  model second o rde r  e l l i p t i c  equat ion 

To make expos i t i on  easier w e  d i s c u s s  ou r  r e s u l t s  u s i n g  

(3 )  

V u = o  - i n  R , 

-div O = f i n  R , - 
u = o  on a R .  

Our r e s u l t s  can be immediately extended t o  g e n e r a l  second o r d e r  e l l i p t i c  

equa t ions  and t o  t h e  e l l i p t i c  systems which a r i se  i n  l i n e a r  e l a s t i c i t y .  

Our r e s u l t s  can a l s o  b e  extended t o  h ighe r  o r d e r  equat ions.  

t o  f o u r t h  o rde r  equa t ions  does not d i r e c t l y  eliminate t h e  need t o  s e e k  f i n i t e  

The a p p l i c a t i o n  



1 
element approximations i n  C . 
i n  C , i t  seems necessa ry  t o  u s e  hybrid methods o r  t o  use a technique 

l i k e  t h a t  used by Ciarlet and Rav ia r t  [ 5 ]  which i n t r o d u c e s  an a d d i t i o n a l  

v a r i a b l e  i n t o  the c a l c u l a t i o n s .  

I n  o rde r  t o  be a b l e  t o  seek approximations 

0 

2 .  Main Resul ts  

W e  in t roduce t h e  space 

2 2 
( 4 )  H(div; 52 ) = (1 E (L (a))' ; d i v  v - E L (52)l 

provided w i t h  the norm 

1 
Note t h a t  

W t h e  norm 

(H1(fi)?2 C H ( d iv ;Q) .  L e t  W = Ho(Q) X H(div;S2) and d e f i n e  on 

(5) 

where y = (u ,g)  . 
1 

Choose f i n i t e  dimensional spaces Vh C Ho(Q) and ShCH(div;Q) , and 

d e f i n e  W = V X S The mixed method w e  cons ide r  f o r  t h e  approximate 

s o l u t i o n  of (3) i s :  f i n d  w = (uh,gh)€ Wh such t h a t  

h h h' 

-h 

where 



We make t h e  fol lowing s t anda rd  approximabil i ty  assumptions 

There is  some r 2 2 such t h a t  i f  U E  HS(R),  

2 5 s 5 rl, then the re  is  some vhE: Vh 

1 ( 8 )  

such t h a t  

h' where C is  independent of u and v 

There i s  some r2 2 2 such t h a t  i f  2 E: (H t(f i))2,  

2 5 t r2,  then t h e r e  i s  some p E: Sh such t h a t  
-h 

Eh where C is  independent of CT and - 

L e t  T denote  t h e  orthogonal p r o j e c t i o n  of 

2 2 
L2(Q) onto Vh and h 

Ph deno te  t h e  or thogonal  p r o j e c t i o n  of (L (a)) onto Sh . 

Theorem 1. Suppose t h a t  the f i n i t e  dimensional spaces  V h C  HO(fi) 1 

and S h C  H(div;R) s a t i s f y  (8), (9) along wi th  
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L e t  (u ,g)  be  the  unique s o l u t i o n  t o  (3) where f & H k ( Q ) ,  k 0.  Then 

f o r  h s u L f i c i e n t l y  s m a l l ,  ( 6 )  h a s  t h e  unique s o l u t i o n  (uh,O,) and 

Proof .  We show t h a t  i f  t h e  spaces  Vh and Sh s a t i s f y  (10) and 

(111, then  f o r  h s u f f i c i e n t l y  s m a l l ,  t h e r e  ex is t s  a cons t an t  a. > 0 

such t h a t  f o r  a l l  w E W -h h 

By Babuska [l, Theorem 2.2 3 (see a l s o  [2 ,  Theorem 6.2.1,  page 1 8 6 ] ) ,  

t h e  f a c t  t h a t  B(y:w) 

cons t an t  M independent of w and w such t h a t  

i s  symmetric and bounded, ( i . e . ,  t h e r e  e x i s t s  a 
- 

a long  wi th  (13) are s u f f i c i e n t  t o  i n s u r e  t h a t  ( 6 )  h a s  a unique s o l u t i o n .  

0 ), w e  choose - 
Given wh - (Uh’-h 

- - 
= - 0 + Ph(CU ) . gh -h h uh = 2uh - TT ( d i m h )  , h 

- 
C l e a r l y  w = (U E E wh -h h’-h t h e r e  e x i s t s  a cons t an t  c such t h a t  

< 
W - I / W  



W e  o b t a i n  

norm, w e  o b t a i n  

W (1-1 ldiv oh-rh(d - 

W 

f o r  h s u f f i c i e n t l y  s m a l l .  

We may a g a i n  u s e  Babuska’s theorem [l, 

e r r o r  bound 

i s  e q u i v a l e n t  t o  t h e  u s u a l  H1 

Theorem 2.2 1 t o  o b t a i n  t h e  

The bound (12) fo l lows  immediately from (15) by (8) and (9) .  

The problem (6) is equivalent  t o  a system of l i n e a r  a l g e b r a i c  equa t ions .  

L e t  +,,...,+, be a b a s i s  f o r  Vh and 21,. . . ,$ b e  a b a s i s  f o r  Sh. Then -m 
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G = ( 0 . )  are computed from 
J and t h e  v e c t o r  of weights  E = ( u . )  , - J 

where A i s  negat ive d e f i n i t e .  Thus t h e  system (16) i s  nonsingular  i f  

and on ly  i f  t h e  m x n m a t r i x  M with e n t r i e s  

i = l , . . . , m ,  

j = 1, ..., n ,  

i s  of f u l l  rank. This  is  a weaker cond i t ion  than  (10) and (11). It is 

easy t o  see, however, t h a t  (10) i s  necessa ry  i n  o r d e r  t o  g e t  convergent 

approximations.  Suppose t h e  u i n  (10) i s  t h e  f i n i t e  element approxi- 

mation from Vh t o  t h e  s o l u t i o n  u of 

- 
h 

- A u = ~  i n  s2 , 

u = o  on R , 

computed u s i n g  t h e  s tandard f i n i t e  element method. 

a n a l y s i s  shows t h a t  V;, converges t o  Vu = - cl as h -f 0. Thus (10) i s  

t o  a necessa ry  condi t ion f o r  t h e  mixed f i n i t e  element approximation 

converge t o  2. 

t h a t  dim Sh 2 dim V(Vh), where V(Vh) i s  t h e  space of a l l  g r a d i e n t s  of 

elements of Vh. 

The s tandard e r r o r  

gh 

A necessa ry  cond i t ion  f o r  t h e  s a t i s f a c t i o n  of (10) i s  

The cond i t ion  (11) w a s  used i n  our proof of Theorem 1 t o  i n t r o d u c e  

t h e  term I l d iv  ghl I i n t o  t h e  r i g h t  s i d e  of (14) as r equ i r ed  i n  our  
L2 (a)  

norm ( 5 )  f o r  W. If w e  had used i n s t e a d  t h e  weaker norm 
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w e  would n o t  have needed (11). 

i n  our  norm on W so t h a t  ( i n  Theorem 2)  w e  can use  Ni t sche ' s  t r i c k  t o  

prove f u l l  accuracy i n  t h e  L norm f o r  both the  approximations u and 

u when t h e  spaces  Vh and Sh a r e  t h e  piecewise polynomials of t h e  

same degree.  

We have included t h e  t e r m  I Id iv  0 1  1 
L ( 5 2 )  

2 
h 

-h 
c 

+ 
h 

Suppose R has a smooth boundary, f E Hk(R), k 2 1, and l e t  V be  

the  same subspace as Vh except t h a t  e lements  of Vh are no t  r equ i r ed  t o  

Vh used i n  s a t i s f y  t h e  boundary cond i t ion  u = 0 on an. For subspaces 

p r a c t i c e  one can smooth f = -div 2 ( i f  necessary)  t o  o b t a i n  f and then  

d e f i n e  an i n t e r p o l a n t  f I  t o  f such t h a t  

+ 
+ 

- 
w - 

- 
L e t  io be t h e  same as f I  bu t  with boundary nodes set t o  zero.  Then 

-0 f E Vh and i t  can be shown t h a t  I 

(A  s i m i l a r  c a l c u l a t i o n  is  used t o  r e l a t e  t h e  change i n  s o l a t i o n  due t o  a 

change i n  domain i n  [ l o ,  pages 194-1951.) Here w e  have used t h e  f a c t  [ l l , p a g e  

2371 t h a t  f can be chosen t o  s a t i s f y  
- 

Thus 

as h -f 0 so  t h a t  (11) is  necessary f o r  d i v  gh t o  converge t o  d i v  a_ i n  

2 L .  
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Other a u t h o r s  have a l s o  given c o n d i t i o n s  f o r  t h e  convergence of mixed 

f i n i t e  element methods. Oden and Lee [ 7 ]  have e s s e n t i a l l y  t h e  same con- 

d i t i o n  as  (10) f o r  approximations i n  l i n e a r  e l a s t i c i t y  us ing  a norm on W 

equivalent  t o  (17).  

'J Uh E Sh t o  ob ta in  opt imal  bounds i n  L2 f o r  t h e  f i n i t e  element approxi- 

n a t i o n  u 

cond i t ions  f o r  t he  system (16) t o  be nonsingular ,  t hey  make no f u r t h e r  

obse rva t ions  concerning t h e  n e c e s s i t y  of t h e i r  cond i t ion .  Oden and Reddy 

i n  [8]  g i v e  optimal bounds i n  L f o r  both uh and 0 bu t  g i v e  cond i t ions  

on t h e  subspaces Vh and Sh which are ve ry  d i f f i c u l t  t o  check. 

They use  N i t s c h e ' s  t r i c k  with t h e  assumption t h a t  
- 

Except f o r  a remark similar t o  o u r s  concerning t h e  necessary h' 

2 
- h  

Raviar t  and Thomas [9] a l s o  cons ide r  mixed methods f o r  second o rde r  e l l i p t i c  

2 - 
equat ions.  They seek approximations i n  t h e  space W = L ( Q )  X H(div;R) 

with norm 

1 

1" 2 2 
IIWII- = (114I 2 +IlalI 

W L (R) H (div;R) 

where w - = ( u , ~ ) .  They g i v e  s u f f i c i e n t  cond i t ions  f o r  e x i s t e n c e  and unique- 

nes s  der ived from B r e z z i ' s  r e s u l t s  [ 3 ] .  The f i n i t e  e lements  they c o n s t r u c t ,  

which s a t i s f y  t h e i r  c o n d i t i o n s ,  a l s o  t r i v i a l l y  s a t i s f y  (11). The cond i t ion  

(10) is no t  needed f o r  t h e i r  norm. 

2 
We now d e r i v e  estimates i n  L f o r  both uh and ah. L e t  eU = u - Uh 

e = CJ-0 and - e = (eu,eO).  - 0 - -h '  - 

Theorem 2.  Assume t h e  r eg ion  R i s  convex. Then 

(19) 



Proof. The proof uses the idea of Nitsche's trick [ 6 ] .  Let (@,E) 

be the solution to 

V @ = v  in s2 

-div v = e in .Q U - 

Then 

<eU,eU) = (eu,div 1) = (-Veu,y-vh) + (e ,v -Vu , 0 -h h - 
- 

Choose v E S such that h' -h h 
for all v E Sh, uh E V -h 

- 
and u such that h 

Using 

and the Schwartz inequality we obtain (18). 

Now let I) be the solution of 

so that 09 = e Then 
0 '  - 

-9- 



Choose $h E Vh such that 

from which (19) follows. 

If the boundary of is curved, isoparametric elements can be used on 

boundary triangles. It is straightforward to check that the orders of 

accuracy presented here are not reduced when isoparametric elements are 

used in boundary triangles similarly to the results of Ciarlet and Raviart 

[ 4 ]  and Zl&nal [ll] , E121 for the standard finite element approximations 

to second order elliptic problems. We note that since no more than one 

partial derivative appears in any integrand, numerical integration is not 

necessary to integrate the isoparametric elements. 

-10- 
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